Exercise 1.24

You are using water to dilute small amounts of chemicals in the laboratory, drop by drop. How many drops of water are in a 1.0-L bottle? (Hint: Start by estimating the diameter of a drop of water.)

Solution

Let's say the diameter of a drop of water is 0.15 inches. Divide it by 2 to get the radius,

$$
r=\frac{0.15}{2}=0.075 \mathrm{in},
$$

and use the formula for the volume of a sphere.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi(0.075)^{3} \mathrm{in}^{3}
\end{aligned}
$$

The number of drops in a 1.0-L bottle can now be estimated. Use Appendix E for the conversion factors of volume.

$$
\frac{1 \text { drop }}{\frac{4}{3} \pi(0.075)^{3} \mathrm{inh}^{3}} \times\left(\frac{1 \text { in }^{2}}{2.54 \mathrm{~cm}}\right)^{3} \times\left(\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}}\right) \approx 3.4 \times 10^{4} \frac{\text { drops }}{\mathrm{L}}
$$

The fraction representing a conversion factor can be squared or cubed because it has a numerical value of 1 .

